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We present a model of a neural network that is based on the diffusion-limited-aggred@tian structure
from fractal physics. A single neuron is one DLA cluster, while a large number of clusters, in an interconnected
fashion, make up the neural network. Using simulation techniques, a signal is randomly generated and traced
through its transmission inside the neuron and from neuron to neuron through the synapses. The activity of the
entire neural network is monitored as a function of time. The characteristics included in the model contain,
among others, the threshold for firing, the excitatory or inhibitory character of the synapse, the synaptic delay,
and the refractory period. The system activity results in “noisy” time series that exhibit an oscillatory char-
acter. Standard power spectra are evaluated and fractal analyses performed, showing that the system is not
chaotic, but the varying parameters can be associated with specific values of fractal dimensions. It is found that
the network activity is not linear with the system parameters, e.g., with the numbers of active synapses. The
details of this behavior may have interesting repercussions from the neurological point of view.
[S1063-651X%97)16308-3

PACS numbd(s): 87.10+¢e, 84.35+i

[. INTRODUCTION the cell, making the potential difference positive to about
~+30 mV. This critical difference of potential is the thresh-

The investigation of the dynamics of neural networks inold 6 of the membrane. At the same time, a very complex
living organisms is of ever-increasing interest for obviousinterchange of ions between both sides of the cell membrane
reasons. In all practices we consider a neural network to be @ccurs via specific channels. This leads to the generation of a
collection of a large number of neurons. The neuron is thesignal or action potential. This change lasts less than one
elementary functional unit of the central nervous systemmsec in time, and propagates through the entire neuron. A
(CNS9). It is an excitable cell that can receive and transmitstimulus that generates an action potential is excitatory. If a
signals to other cells in the network to which it is connected stimulus makes the inner side of the membrane more nega-
which may be local or distant. The structure of a neural celkive, then it is called inhibitory, as it brings the cell potential
is relatively simple, made of the sontthe cell body, the further away from the threshold for firing. When this hap-
axon, and a large number of dendrites. The axon length vapens, the neuron, in order to maintain the ion concentration
ies in a wide range, from some mm to more than a meter, andt acceptable levels, must activate some energy-consuming
it is covered by a sheath of partially electrically inactive mechanisms for reestablishing the previous equilibrium state.
material, the myelin. In most cases the axon of a cell is used The excitatory or inhibitory character depends on the neu-
to transmit a signal to other units. The dendrites are muclotransmitter in use. A synapse may alternate between the
shorter in length, and their function is to make a large num+wo in response to various stimuli. Usually many synapses
ber of connections between the cells, the synapses. The spawst fire at the same time in order to pass a signal to the
tial conformation of the dendrites is very complex with vari- target neuron. The probability of activation of the target neu-
ous levels of arborization, resembling some well knownron is given by the algebraic sum of the excitatory and in-
fractal structures. On the surfaces of the dendrites lie somkibitory contributions.
type of microscopic formations called dendritic spines. The In the brain the signals are passed from neuron to neuron
CNS neurons possess different degrees of branching, antrough the synapses. On the terminal branches of the axons
they are classified accordingly as simple unipolar, bipolarthere are small knobs called presynaptic terminals. They are
pseudo-bipolar, and multipolar. Anatomical studies providemicroscopic enlargements of the end point and contain
well known information as to what type of neurons make up(among other organellgshe synaptic vesicles, the stock of
the various sites of the brain. the neurotransmitter molecules. At this point the distance

The membrane of the neuron is used for the signal transsetween the two membranes is very smal200 A). This
mission. The inner side of the membrane is electrically negaspace is called synaptic cleft. The activation of the synapse
tive while the outer side is positive. This potential differencereleases the neurotransmitter. The time that the signal needs
is about—90 mV. This is due to the difference in the con- to pass to the next neuron is 1000 times greater than the time
centrations of the various iondNa™, K*, CI~, HCO;~, the signal needs to propagate the same distance along the
ca&*t, Mg?", etc) inside and outside the membrane. If an neuron membrane. The synapse acts as a delay point in the
electrical stimulus is applied to a point on the membranetransmission. How this delay affects the brain function is not
nothing happens until the potential difference reaches valuedear.
greater than-60 mV. At this threshold value the membrane  Another important property of the synapse is its dynamic
becomes permeable to Naions, which enter massively in adaptation. When a synapse is used very frequently for sig-
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(a) (b)

FIG. 1. (a) A simple isolated DLA clustertb) A camera lucida drawing of a typical Purkinje neuren.

nal processing within a short period of time then its threshold One possible means to further enhance our understanding
is proportionally reduced. This is known as the Hebbian rulepf the brain is to create a computational model for the activ-
and it is a remarkable example of adaptive behavior in livingity of a network. It is true that such a model can exist at
organisms. different levels of complexity, starting from the ingredient
A synapse may be formed between an axon and a dendriteolecules and moving on to the cell membrane, the neuron,
(axo-dendritig, between an axon and the cell soao- clusters of neurons, neural nets, etc. At every level one is
somatig, between two axong&xo-axoni¢, or between den- limited by the available knowledge. The first mathematical
drites (dendro-dendritic For every neuron there is, on the approach of this type was the perceptron, a model proposed
average, a number of 1@ynapses. by McCulloch and Pitt$1] in 1943. It was the first effort that
The main characteristics of the structure of the variousused a neural network as an ensemble of a large number of
brain sites are well known. In the brain cortex, for example,units, but acting in a collective manner. A second monumen-
a piece of tissue 1 mfunder the microscope shows six tal model was proposed by Hodgkin and Huxley in 193P
layers with a known type of cells and known orientation of which focused on the mechanism of the ion exchange
their fibers. The cerebellar cortex has three layers, where wiirough the cell membrane that leads to signal propagation
know exactly the type of cells and the fiber conformation inthrough the neurons. There is an enormous amount of work
each one of them. What is not known is how a small numbethat emanated from these two pioneering efforts.
of neurons are mutually interconnected. The interconnections One of the parameters that has not been considered in
are very dense, and local closed loops of neurons are formethese and subsequent models is the spatial conformation of
These loops may function as a feedback system. The inhibihe neuron with its complex arborizations, the position of the
tory synapses play an important role in these loops. Withouneurons in space, and the complicated interconnections be-
them a loop can carry a signal indefinitely, and this may leadween them. A model that includes all these parameters
to neuron death by a process known as excitotoxicity. Thanight be useful in the study of these properties, and their
inhibitory synapses regulate the flow of information in therole in the entire brain function. One would hope to include
local or distant neural networks. as many characteristics as possible, from the present state of
All these connections are continuously remodeling as &nowledge. Nevertheless, up to now very few models exist.
function of various stimuli. This remodeling consists of ex For example, in most cases the neuron is treated as the small-
novo formation of new synapses and changes in existingst unit of the system while we know that this is far from the
synapses or destruction of synapses. These processes neddugh. In the present work we propose a model in which we
high quantity of energy, so the brain with a mean weight ofhave included as many characteristics as possible.
1.2 kg(less than 2% of the total body weigltbonsumes 20% One model for the neuron structure that has recently been
of the energy of the entire body. used as a prototype of a neural network is borrowed from
The brain function comprises various sensorial, motor andondensed matter theory and is related to crystal growth, the
cognitive tasks. All of them are harmoniously integrated in aso-called diffusion-limited-aggregatioODLA) model [3].
structured behavior. Every task, such as speech or objedthis model represents a highly ramified structure character-
recognition is accomplished in specific sites of the brain. Inized by an abundance of dendrites, similar to the neural den-
most parts, the function of every site is well known. Thedrites. A typical picture of such a DLA structure is given in
specialization of various parts of the brain reflects a differenfig. 1(a), while the details are described later. Figui®)l
microscopic structure of various types of neurons and withgives a camera lucidgt] (which is a tracing out from slices
various connections between them. of neural tissue, under the microscoplawing of a typical



56 MODEL FOR A NEURAL NETWORK STRUCTURE AND ... 4491

perform a random walk inside the circle. If it happens that its

position at some time during the walk is adjacent to the

original seed, then the motion stops and the particle gets
i : attached to the seed, so that a cluster of two particles is now
Waw 4 7 formed. If it happens that the particle moves outside the
L circle, i.e., away from the seed, then this particular particle is
ignored, and we go on to the next particle. The process con-
tinues with a numbeN of particles being attached to the
cluster. The numbeN depends on the desired size. A com-
plete DLA structure is shown in Fig.(48. The interesting
and curious observation in DLA is the peculiarity of the
structure formed, which is far from compact. The character-
istic property that prevails is that after the initial formation of
the cluster by the first few particles, subsequent particles
have a very low probability of reaching and attaching to the
original seed, or to a site close to it, but a high probability of
attaching along the dendrites, further increasing the dendritic
character of the overall shape. An added advantage of the
DLA model is that it is a regular fractal structure, i.e., it is
self-similar under magnifications or reductions. It has a frac-
tal dimensiond;=1.60. While a DLA is a highly random
structure, and statistical in nature, this characteridtipro-
vides a useful quantitative measure to the entire system.

A number of neurons of sizBl is first formed indepen-

dently and then placed together on a two-dimensional square
lJa’[tlce in random positions. Thus the sytem has a depsity

FIG. 2. (COLOR) A collection of eight DLA clusters built on a
350% 350 lattice. The cluster mean size is 2200 sites. In this struc-
ture p=0.12.

Purkinje neuron. The resemblance between the two is stri

: hich is given by the (total number of neuron
ing. Such a model was recently proposed by Casetrtal.
[5?, for which the fractal dimensii/)npwgs calcul)z;ted. What Wesnes)/(number of system lattice siedThe placing is done by

propose is to use a collection of a large number of thes apdomly choosing the positions of the seed of each_ neuron.
structures so as to construct an entire neural network. In '? not aIIo_\I{\;?d _fOBtWO seet(rj]stt(:hbe cIoT,er Fhan a lmm'nmm
neural network the overlap of the dendrites of different neu- Is 3”?60 dls 'St Orﬁ] S0 that the overiap 1S mal_rl_1hy on Ie
rons represents the synapses. Similarly here the dlfferer‘?(en files and not on the neuron soma or axon € overiap

DLA's overlap and produce an interconnecting pattern. suckites are first identified as the sites occupied by dendrites
a network is shown in Fig. 2, where there are eight neuronfelonging to different neurons. These sites are labeled as the
present. system synapses. _ _ N

In the present model the neuron is not treated as the At the ends of the lattices cyclic boundary conditions are
smallest unit of the network, as it is usually done, but itsSMPloyed, so that one unit touching the lattice boundary may

internal structure is utilized. In particular, we investigate herebe allowed to continue on the other side.
how a signal is transferred inside a ramified structure, and
then transferred from one unit to the adjacent units through IIl. NEURON DYNAMICS
the synapses. Thus, one neuron is made of several thousand
“building blocks,” which we will address as neuron sites,  The signal is initiated in a neuron site. Both the site and
representing a realistic neuron structure. It is at this point thaie neuron are randomly chosen. This initial site is charac-
the DLA structure is particularly useful, as each such clusteterized as active. One time unit is the time it takes for the
is made of a large number of building blocks, with the over-signal to be transmitted to its neighbor site, which is in the
all picture resembling a real neuron. The details of the DLASame neuron. This is the smallest time increment in the
structure are given in Sec. II, while the dynamics in suchmodel. There are available up to three neighbor points. This
structures is given in Sec. Ill. Our results are given in Secis because the signal at each instance preferentially does not
IV, the signal analysis section. Finally, the conclusions andeturn to the site where it originated, but is spread forward
summary are given in Sec. V. throughout the network. This is done by characterizing the
original point as passive for the subsequent two time units so
that no signal can propagate through it for two moments.
This restriction is removed after two time units. The newly
A neural network is constructed of a large number of unitsvisited points are also characterized as active. This procedure
(neurons. Each neuron structure is a DLA cluster. Briefly, a is repeated for a large number of time units. This mode of
DLA cluster structure is constructed in the following way. transfer resembles a spreading wave.
We start with a seed located in the center of a symmetrical When the signal reaches a synapse site, it may be carried
object, such as a circle or a square, in two dimensions. Thever to the adjacent neuron that it is in contact with. In order
underlying space is a two-dimensional gfldttice). Similar  for this to happen the value of the signal must be greater than
objects would apply in three dimensions. A particle is posi-the neuron thresholé. Hered is given as a parameter. If the
tioned in the circumference of the circle, and it is allowed tosignal is smaller tham then it is not lost but accumulated at

II. STRUCTURE OF THE NEURAL NETWORK
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the synapse together with other arriving signals. At this point 0.60 .
there is an option for adjusting the length of time over which
accumulation takes place so that this time is used as a ps
rameter. When the signal is greater than the threstoliden 0.30 -
it can be carried over to the adjacent neuron. This procedur
is not instantaneous, but the transmission is delayed for M\
certain time, called the synaptic delé$D). The reason for 0.00 r-f v
this is because it is known that the signal transfer in the
synapse is of the order of 1000 times slower than the transfe
inside a neuron. If during the synaptic delay a new signal 930 -
reaches the synapse it is ignored. After firing, the synaps:
goes into a refractory periodRP). We define the refractory
period as the time period that follows the activity of a syn- 900 p
apse, during which period this synapse cannot be active an®
more but must necessarily remain passive.

All synapses operate only one way, the direction being
chosen at random, but staying the same for the entire dure
tion of the calculation. When a traveling signal first reaches ¢
synapse, it checks to find out the directionality of that syn-
apse. If the direction of propagation is the same as the direc
tionality of the synapse then the process proceeds as dt
scribed. If, on the other hand, the synapse directionality is
opposite, then the signal cannot be transmitted. In this cas
the synapse is placed in a refractory period. All signals pos i
sibly present in that synapse are annihilated. 000 5000 10000 15000 20000

All synapses are characterized as either excitatory or in Time (MCS)
hibitory. The fraction of eachliout of the total number of

synapsekis f andf;, respectively. Thusf+f;=1.0. The steps(MCS)] RP=300, SD=800, f,=0.80. The four diagrams de-

Identlty_ .Of each synapse 1S dete_rmlned at random Wlt_h %ict the percentage of the synapses that is ukgdwhich is (bot-
probability according to that fraction. Generally, the excita-i 1o top: f,=1.0, 0.75, 0.50, 0.20

tory (inhibitory) characterization describes the property that
brings closer(further away the synapse signal value to the gypipits, as a function of time. The activity is defined as
synapse threshold. In particular, this is implemented herg,e fraction(out of the total of the active units at a given
using the following way: For an excitatory synapse the signalime  |n most cases we consider as a unit the entire neuron,
is transmitted in its full value, as previously described. Forgen though(see laterwe also examine the case of the syn-
an inhibitory synapse the signal becomes negative, and Sim}a‘pse constituting a unit. Thus=(neurons that are

larly it gets transmitted through the synapse to the next NeUsctivel/(total number of neurons in the systerhus, it is

ron, but_ its value is decre_asing vyith tim_e. The rate of de'always 0<a<1. In Figs. 3-8 we show the response of the
crease is constant, following a simple first-order rate law

> : neural network to a change in the values of the parameters
The constank is also given as a parameter. The same cOngjiscyssed. In Fig. 3 we have a neural network with a refrac-

stant is used throughout this paper; it is such that it decreasggry period RR=300, a synaptic delay SB800, and a frac-
the signal byg of its previous value. When a negative signal tion f,=0.8 of excitatory synapses. We vary hefrg the

reaches a synapse it causes the synapse threshold to incregseyion of synapses used, frofg=0.2 to f,=1.0. We im-
, . =1.0.

bY an amount eq-ual to the signal value. This lasts for a C€mediately observe that the activity exhibits an oscillatory
tain amount of time and then the threshold returns to th

: %ehavior. It starts from a zero value, increases during the first
normal value. Here we usae- S0 time steps for all calcula- 19 0gp steps, and then reaches a constant, “equilibrium”
tions. Negative signals traveling inside a neuron cannot bga\ye This constant value is higher for the larger fraction of

transmitted to other neurons. active synapses, as expected, since there are more pathways

In the present model the number of existing synapses dgsy, \yhich the signal can spread throughout the entire net-
pends on the density of the DLA structures. Thus, we introy,q Thus. it ranges from abowt=0.2 (for f,=0.2) to
. , . =0.

duce the parametd;, which represents the f_raction ofthe 5_p4 (for fs=1.0). We notice that the relation is far from
synapses that can be used to tran_sfer the signal. The rest pf ar, but actually sublinear, implying that in a system such
the synapses are present but the signal cannot be propagated ihe present one, due to the large number of units and
through them. This is a way to increase or decrease the oVefsarconnections, one needs only a small fraction of active
all signal transmission. Individual synapses are chosen ransynapses for the signal propagation. Conversely, if a large
domly, according to probabilitys, regarding their activity.  yymper of synapses is destroyed over time, this does not lead
to catastrophic consequences for the operation of the neural
net.

The oscillatory behavior is encounteréahd also in the

The behavior of a neural network such as the one desubsequent figurgdecause of the constraint of the refrac-
scribed here is monitored via the network activity that ittory period imposed on the neural activity, which decreases

0.30 |

0.00 |

0.30

FIG. 3. Normalized(neuron activity vs time[in Monte Carlo

IV. SIGNAL ANALYSIS
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FIG. 4. Normalized (synapsg activity vs time (in MCS). FIG. 5. Normalized (neuron activity vs time (in MCS).

RP=300, SD=800, fc=0.8. The four diagrams depict the percent- Rp=300, f,= 0.8, while the fraction of the synapses that are used is
age of the synapses that is uséd, which is (bottom to top:  { .=0.50. The four diagrams depict the SD, which(imttom to
f&=1.0, 0.75, 0.50, 0.20. top): 200, 600, 1000, 1500.

the activity to zero after firing. This is a very realistic feature. starting points of the signal. This implies that all signals
First, it shows that the activity time series is not fully peri- would follow totally different paths. We also used totally
odic. However, there is obviously some “approximate” pe- different DLA clusters with the same stipulations as before.
riodicity as the distance between the peaks is almost conFhe results are shown in Figs. 7 and 8. In these figures we
stant. This means that some new information may baise the same parameter values as in Fig. 6. In Fig. 7 we have
revealed in it, and this is presented after the discussion of thihe case of a small fraction of excitatory synapdes;0.3.
figures with the variation of the system parameters. We notice that we get a large variety of signals, ranging from
Figure 4 shows the same data as in Fig. 3, but now weero to periodic signals, but all have the characteristic that
plot the activitya of the synapses, i.e., only for this figure, they are small, and consistent with the small values of Fig. 6.
for comparison purposes, is the fractiona=(synapses that In Fig. 8 we performed the same calculations, but for a large
are activey(the total number of synapsesVe observe simi- fraction of excitatory synapses,=0.8. Here we see that the
lar behavior as in the activity of neurons of the previousvariation of the signal is minimal, implying that for large
figure. parameter values the system behavior is always the same.
Figure 5 shows the variation of the length of the SD. HereWe conclude that randomness in these systems does not
SD goes from 200 to 1500, and we notice that the activity ofdrastically affect their behavior, but simply shows the statis-
neuronsa goes froma=0.10 toa=0.45. This increase is tical character of the process.
also expected, because the short SD allows for faster signal A firstimpression about the nature of these signals can be
transmission and propagation. obtained by taking the power spectrum of these, at least to
Figure 6 shows the variation df,, the fraction of exci- exclude the possibility that there is only white noise present.
tatory synapses. A small fraction leads to an almost zerdhus, in Fig. 9 we take the power spectrum of the curve of
activity, and vice versa. Of course, this is due to the fact thafFig. 3(@), and plot it in log-log form. We see a straight line
a small fraction of excitatory synapses means that typicallyith the slope of—1.81. Different statistical realizations of
these synapses are well below the threshold value. this curve produced a slope ef1.83 (average of 10 differ-
In these calculations the general question arises as to whant realizations This implies af ~2 law, and some underly-
effect randomness has in the observed behavior, and also tog structure in the signal.
the relation of randomness to the choice of the specific val- In order to quantitatively interpret the periodicity of the
ues of the parameters used. For this reason we performexttivity signals presented above, we performed an analysis of
calculations for the parameter values of Fig. 6 under severaleveral of these signals, according to the method of Grass-
different variations of randomness. Thus, we used differenberger and Procacc[&]. In this method the signal is treated
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FIG. 6. Normalized (neuron activity vs time (in MCS). FIG. 7. Normalized (neuron activity vs time (in MCS).

RP=300, SD-800, f;=0.5. The four diagrams depict the change RP=300, SD=800, the fraction of the synapses that is used is

in the fraction of the excitatory synapses, whiclisttom to top:  f.=0.5, while the fraction of the excitatory synapses is-0.30.

f.=0.80, 0.60, 0.50, 0.30. Each plot is produced for a different signal starting pditferent
random number generator s¢ed

as a time series for which a possible characteristic fractal

dimension can be derived. This is done in the following Xn_1:Xo(ty+ (N—1)At),Xo(to+ (N—1)AL), ...,

method. We consider a time series to be made of the signal

of any of these in Figs. 3—-8. We must ignore the section of ~ Xo(ty+(n—1)At).

the series which gives an initial rise, and keep only the sec-

tion for which the signal varies around a mean value at'I'hese variables are expected to be linearly independent if the

which point it is a steady-state signal. For example, for the®t Shift is properly chosen. We chose several differaat

signal of Fig. %c) we consider the time domain yalues, Ibut in t.he subsequgnt calculations we Aise 1000

10 000<t<50 000. Let us call this signaly(t). We would ~ ime units. Notice thak(t) is a vector made of the set of

like to reconstruct the dynamics of the system solely on ouPCiNts, as given in Eql). A general notation for it is; . We

knowledge ofxo(t). We consider the phase space spanned©W choose a reference pointipand compute all the dis-

by the variablesk=0,1,2,...,n—1, wherek are several tancesx; —x;| from the (N—1) remaining points. This way

variables that take part in the dynamics of the system. FoWe get the total of all points; in phase space. Doing this for

our problem these are the parameters of refractory period!l I we get

synaptic delay, etc. At a given time a state of the system is a 1 1

point in phase space, while a sequence of states in time gives C(h)= _2 _2 O(I—|x;i—xo|) |, 2)

a trajectory. If the dynamics of the system obey some dissi- N N

pative deterministic laws, then the trajectories converge to an g, . . o

attractor. We thus form this attractor from tikg(t) series, whéa(r; f’ 1thfe Hegv;(/:snde' Stﬁp functllo(':r)(x)f—o,}f x<f0h

by successively shifting the original time series by the samé&" (X)_. T x=0. (1) is the corre .atlon unction of the

amount in timeAt, and formingn such series as attractor, since it shows ho_w a point in the vectotaffectg
the positions of other points. Thus if the attractor is a

X0 Xo(t1) Xo(ta) Xo(tn) d-dimensional manifold, then we expect

c()~19, (©)
X1:Xo(t1+AL),Xo(to+AL), ... Xo(ty+AL),
with its dimensionality given by the exponedt In Fig. 10
Xa:Xo(ty+2At),Xo(to+2A1), ... Xo(ty+2At), (1)  we plot in log-log formC(l) vs | for several differentm
values. We see that for smath the slopes of the ensuing
curves increase, but aften=5 (approximately the slopes
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FIG. 10. The correlation coefficien€,(l) vs| for the signal of
0.00 p .
Fig. 5b).
030 | the neural net activity to the fractal dimension picture. Of
course, if the signal contained only white noise, then we
{f\}‘\ would not observe the saturation to a finite slope, as in Fig.
0.00 E i A 11, but the slope would increase linearly within the entire
o]

5000 10000

, 15000 20000 domain. We note here, however, that the estimation of the
Time (MCS)

slopes in the curves of Fig. 1fhat are used to produce Fig.
11) is very precarious, because our data do not have long
straight line sections, as one would, in principle, expect theo-

fs=0.5, while the fraction of the excitatory synapsed is-0.80. retically. Since thig is common with experimental signals, we
Each plot is produced for a different signal starting paditferent ~ US€d only the straight sections of these curves, but in a con-

random number generator sged sistent manner.
In Fig. 12 we plot the Kolmogorov entrogg vs m for the

become constant. In Fig. 11 we plot the slopewsproduc-  Value of =0.004.K is defined as
ing the fractal dimension of the system. We do this for the
four signals of Fig. 5, which are very different in their com- InC
plexity. The eventual limiting slope is in the range of 4.0— =__m
5.0, while we observe that the higher-frequency signal gives InCp,—4
the highest slope and as the frequency signal decreases, the

fractal dimension also decreases monotonically. Thus, thig : . .
and we observe that in the same ramgés also reaching a

method supplies a good quantitative criterion, that ConneCté’onstant value, as expected, from the fractal dimension pic-

ture.

FIG. 8. Normalized (neuror) activity vs time (in MCS).
RP=300, SD=800, the fraction of the synapses that is used is
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FIG. 9. Power spectrum of the signal of plot of Figa3 plotted
in logarithmic scale. The frequency is in inverse MCS. FIG. 11. Slopes of the curves of Fig. 10 ns
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set of initial conditions that is used leads to a characteristic
fractal dimension, which is always monotonic and within a

given range. The numerical value of the fractal dimension
gives information about the signal magnitude and other char-
acteristics, making it a useful quantity to monitor.

An important point is that the brain is a very complex
feedback system. The biological systems in nature consist of
millions of elementary feedback subsystems, which control
each other in a very precise hierarchical structure. In the
present simulation feedback subsystems exist created in ran-
dom order. In these subsystems both inhibitory and excita-
tory synapses exist. We have included a parameter that de-
fines the ratio between the excitatory and inhibitory
synapses. We observed that a major number of inhibitory
s ' . synapses corresponds to a lower activity of the system ex-
“20 40 6.0 8.0 pressed in the number of active units at the given time. This
situation is observed in biological systems as well, especially
when we supply the organism with substances that enhance
the inhibitory synapses.

. . Also of importance is the “spatial” aspect of the signal
We performed the same analysis for some more such sigz,\smission. In the brain the signals are transported by

ngls, resultl_ng IS s!mllar curves, anq ?'m"af fractal dlmen'bundles of fibers, a structure that does not exist in our model,
slons. The |mpI|cat|on_of th!s ana_IyS|§ is that fqr our s3./Stembecause of the small number of neurons used. We will deal
the minimum embedding dimension is approximately in thewith this in the future

range ofm=5-6, signifying that this is the number of pa-
rameters that is necessary to describe the system. This nury
ber most probably maps the total number of parameters us
in the simulation, and thus it includes the refractory period,
the synaptic delay, the percentage of synapses used, and

percentage of excitatory synapdéstal of four parametejs

FIG. 12. Kolmogorov entropK vs m for the data of Fig. 10.

The brain, as an autonomous system, operates under vari-
ts internal or external conditions. If it loses a small number
neurons and/or synapses, it can achieve its target without
serious problem. In various diseases, such as in Parkinson’s
ease, it is well known that before the first symptom ap-
pears, a specific region of the braisubstantia nigraloses
more than 60-70 % of its neurons, and consequently the
V. SUMMARY AND CONCLUSIONS relevant synapses. Similar observations pertain in all degen-
In the present work, we have attempted to build a primi—erative diseases. This c.ondition is treqted in the present
study, as the parameter in the system given by the ratio of

tive model for the activity of neural networks that incorpo- > Lo
rates the characteristics of the neural activity of the CNS,aCt'Ve synapses. We saw that the system activity is decreased

with several conceptual parameters, for which it is known@S the number of active synapses is decreased. A desired

from physiology that they are very basic in the dynamics 0fquantity would be the exact point that_ this dggepera’gion first
neural networks in living organisms. The prime difference of2Ppears. However, we have not dealt in detail with this quan-

our model is that it does not treat the neuron as the smalleé‘fyI in the pl)re§ent study. that i fi |
unit of the neural network, but each neuron is made of thoy- 1 cONnclusion, we see that incorporating many compiex

sands of building blocks, with a ramified dendritic structure,feau_JreS in neural ngtworks_ based on mformatlon from neu-
which plays an important role in the signal transfer. roscience leads to interesting conclusions, some expected,

We have shown that the activity of a net made of DLA while others give, at least qualitatively, the trends of what
structures produces a very complex, “chaotic” looking sig- happens when the number of synapses and the excitatory to

nal, which, upon elaborate analysis, is found to contain in—Inhlbltory ratio are decreased.
formation about the magnitude of the system parameters.
This signal is the response of the system to the random im-
pulse presented. A detailed approach shows that it is far from We thank Professor A. Anagnostopoulos for several dis-
random or white noise, but it quantitatively gives a measureussions and suggestions on the signal analysis. This work
of the ability of the neural net to sustain its activity. Every was supported in part by Rhone-Poulenc Rorer Inc.
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