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Model for a neural network structure and signal transmission

C. Kotsavasiloglou,1 A. Kalampokis,2 P. Argyrakis,2 and S. Baloyannis1
1Department of Neurology I, School of Medicine, University of Thessaloniki, GR-54006 Thessaloniki, Greece
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We present a model of a neural network that is based on the diffusion-limited-aggregation~DLA ! structure
from fractal physics. A single neuron is one DLA cluster, while a large number of clusters, in an interconnected
fashion, make up the neural network. Using simulation techniques, a signal is randomly generated and traced
through its transmission inside the neuron and from neuron to neuron through the synapses. The activity of the
entire neural network is monitored as a function of time. The characteristics included in the model contain,
among others, the threshold for firing, the excitatory or inhibitory character of the synapse, the synaptic delay,
and the refractory period. The system activity results in ‘‘noisy’’ time series that exhibit an oscillatory char-
acter. Standard power spectra are evaluated and fractal analyses performed, showing that the system is not
chaotic, but the varying parameters can be associated with specific values of fractal dimensions. It is found that
the network activity is not linear with the system parameters, e.g., with the numbers of active synapses. The
details of this behavior may have interesting repercussions from the neurological point of view.
@S1063-651X~97!16308-5#

PACS number~s!: 87.10.1e, 84.35.1i
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I. INTRODUCTION

The investigation of the dynamics of neural networks
living organisms is of ever-increasing interest for obvio
reasons. In all practices we consider a neural network to
collection of a large number of neurons. The neuron is
elementary functional unit of the central nervous syst
~CNS!. It is an excitable cell that can receive and transm
signals to other cells in the network to which it is connect
which may be local or distant. The structure of a neural c
is relatively simple, made of the soma~the cell body!, the
axon, and a large number of dendrites. The axon length
ies in a wide range, from some mm to more than a meter,
it is covered by a sheath of partially electrically inacti
material, the myelin. In most cases the axon of a cell is u
to transmit a signal to other units. The dendrites are m
shorter in length, and their function is to make a large nu
ber of connections between the cells, the synapses. The
tial conformation of the dendrites is very complex with va
ous levels of arborization, resembling some well kno
fractal structures. On the surfaces of the dendrites lie so
type of microscopic formations called dendritic spines. T
CNS neurons possess different degrees of branching,
they are classified accordingly as simple unipolar, bipo
pseudo-bipolar, and multipolar. Anatomical studies prov
well known information as to what type of neurons make
the various sites of the brain.

The membrane of the neuron is used for the signal tra
mission. The inner side of the membrane is electrically ne
tive while the outer side is positive. This potential differen
is about290 mV. This is due to the difference in the co
centrations of the various ions~Na1, K 1, Cl2, HCO3

2,
Ca21, Mg21, etc.! inside and outside the membrane. If a
electrical stimulus is applied to a point on the membra
nothing happens until the potential difference reaches va
greater than260 mV. At this threshold value the membran
becomes permeable to Na1 ions, which enter massively in
561063-651X/97/56~4!/4489~8!/$10.00
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the cell, making the potential difference positive to abo
;130 mV. This critical difference of potential is the thres
old u of the membrane. At the same time, a very comp
interchange of ions between both sides of the cell membr
occurs via specific channels. This leads to the generation
signal or action potential. This change lasts less than
msec in time, and propagates through the entire neuron
stimulus that generates an action potential is excitatory.
stimulus makes the inner side of the membrane more ne
tive, then it is called inhibitory, as it brings the cell potenti
further away from the threshold for firing. When this ha
pens, the neuron, in order to maintain the ion concentra
at acceptable levels, must activate some energy-consum
mechanisms for reestablishing the previous equilibrium st

The excitatory or inhibitory character depends on the n
rotransmitter in use. A synapse may alternate between
two in response to various stimuli. Usually many synap
must fire at the same time in order to pass a signal to
target neuron. The probability of activation of the target ne
ron is given by the algebraic sum of the excitatory and
hibitory contributions.

In the brain the signals are passed from neuron to neu
through the synapses. On the terminal branches of the a
there are small knobs called presynaptic terminals. They
microscopic enlargements of the end point and cont
~among other organelles! the synaptic vesicles, the stock o
the neurotransmitter molecules. At this point the distan
between the two membranes is very small (;200 Å!. This
space is called synaptic cleft. The activation of the syna
releases the neurotransmitter. The time that the signal n
to pass to the next neuron is 1000 times greater than the
the signal needs to propagate the same distance along
neuron membrane. The synapse acts as a delay point in
transmission. How this delay affects the brain function is n
clear.

Another important property of the synapse is its dynam
adaptation. When a synapse is used very frequently for
4489 © 1997 The American Physical Society
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FIG. 1. ~a! A simple isolated DLA cluster.~b! A camera lucida drawing of a typical Purkinje neuron@4#.
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nal processing within a short period of time then its thresh
is proportionally reduced. This is known as the Hebbian ru
and it is a remarkable example of adaptive behavior in liv
organisms.

A synapse may be formed between an axon and a den
~axo-dendritic!, between an axon and the cell soma~axo-
somatic!, between two axons~axo-axonic!, or between den-
drites ~dendro-dendritic!. For every neuron there is, on th
average, a number of 104 synapses.

The main characteristics of the structure of the vario
brain sites are well known. In the brain cortex, for examp
a piece of tissue 1 mm3 under the microscope shows s
layers with a known type of cells and known orientation
their fibers. The cerebellar cortex has three layers, where
know exactly the type of cells and the fiber conformation
each one of them. What is not known is how a small num
of neurons are mutually interconnected. The interconnect
are very dense, and local closed loops of neurons are form
These loops may function as a feedback system. The inh
tory synapses play an important role in these loops. With
them a loop can carry a signal indefinitely, and this may le
to neuron death by a process known as excitotoxicity. T
inhibitory synapses regulate the flow of information in t
local or distant neural networks.

All these connections are continuously remodeling a
function of various stimuli. This remodeling consists of
novo formation of new synapses and changes in exis
synapses or destruction of synapses. These processes n
high quantity of energy, so the brain with a mean weight
1.2 kg~less than 2% of the total body weight! consumes 20%
of the energy of the entire body.

The brain function comprises various sensorial, motor a
cognitive tasks. All of them are harmoniously integrated in
structured behavior. Every task, such as speech or ob
recognition is accomplished in specific sites of the brain.
most parts, the function of every site is well known. T
specialization of various parts of the brain reflects a differ
microscopic structure of various types of neurons and w
various connections between them.
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One possible means to further enhance our understan
of the brain is to create a computational model for the ac
ity of a network. It is true that such a model can exist
different levels of complexity, starting from the ingredie
molecules and moving on to the cell membrane, the neu
clusters of neurons, neural nets, etc. At every level one
limited by the available knowledge. The first mathematic
approach of this type was the perceptron, a model propo
by McCulloch and Pitts@1# in 1943. It was the first effort tha
used a neural network as an ensemble of a large numbe
units, but acting in a collective manner. A second monum
tal model was proposed by Hodgkin and Huxley in 1952@2#,
which focused on the mechanism of the ion exchan
through the cell membrane that leads to signal propaga
through the neurons. There is an enormous amount of w
that emanated from these two pioneering efforts.

One of the parameters that has not been considere
these and subsequent models is the spatial conformatio
the neuron with its complex arborizations, the position of t
neurons in space, and the complicated interconnections
tween them. A model that includes all these parame
might be useful in the study of these properties, and th
role in the entire brain function. One would hope to inclu
as many characteristics as possible, from the present sta
knowledge. Nevertheless, up to now very few models ex
For example, in most cases the neuron is treated as the s
est unit of the system while we know that this is far from t
truth. In the present work we propose a model in which
have included as many characteristics as possible.

One model for the neuron structure that has recently b
used as a prototype of a neural network is borrowed fr
condensed matter theory and is related to crystal growth,
so-called diffusion-limited-aggregation~DLA ! model @3#.
This model represents a highly ramified structure charac
ized by an abundance of dendrites, similar to the neural d
drites. A typical picture of such a DLA structure is given
Fig. 1~a!, while the details are described later. Figure 1~b!
gives a camera lucida@4# ~which is a tracing out from slices
of neural tissue, under the microscope! drawing of a typical



tri

we
es
In
eu
re
uc
on

th
its
er
an
ug
sa
s,
th
te

er
LA
c
ec
n

it
a
y.
ic
Th

si
to

its
he
ets

now
the

is
on-
e
-

e
er-
of
les
he
of
ritic
the

is
ac-

are
y

ron.
m

he
rlap
ites
the

re
ay

nd
ac-
he
he
the
his
not
rd

the
so
ts.
ly

dure
of

rried
er

han
e
t

ru

56 4491MODEL FOR A NEURAL NETWORK STRUCTURE AND . . .
Purkinje neuron. The resemblance between the two is s
ing. Such a model was recently proposed by Casertaet al.
@5#, for which the fractal dimension was calculated. What
propose is to use a collection of a large number of th
structures so as to construct an entire neural network.
neural network the overlap of the dendrites of different n
rons represents the synapses. Similarly here the diffe
DLA’s overlap and produce an interconnecting pattern. S
a network is shown in Fig. 2, where there are eight neur
present.

In the present model the neuron is not treated as
smallest unit of the network, as it is usually done, but
internal structure is utilized. In particular, we investigate h
how a signal is transferred inside a ramified structure,
then transferred from one unit to the adjacent units thro
the synapses. Thus, one neuron is made of several thou
‘‘building blocks,’’ which we will address as neuron site
representing a realistic neuron structure. It is at this point
the DLA structure is particularly useful, as each such clus
is made of a large number of building blocks, with the ov
all picture resembling a real neuron. The details of the D
structure are given in Sec. II, while the dynamics in su
structures is given in Sec. III. Our results are given in S
IV, the signal analysis section. Finally, the conclusions a
summary are given in Sec. V.

II. STRUCTURE OF THE NEURAL NETWORK

A neural network is constructed of a large number of un
~neurons!. Each neuron structure is a DLA cluster. Briefly,
DLA cluster structure is constructed in the following wa
We start with a seed located in the center of a symmetr
object, such as a circle or a square, in two dimensions.
underlying space is a two-dimensional grid~lattice!. Similar
objects would apply in three dimensions. A particle is po
tioned in the circumference of the circle, and it is allowed

FIG. 2. ~COLOR! A collection of eight DLA clusters built on a
3503350 lattice. The cluster mean size is 2200 sites. In this st
ture r50.12.
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perform a random walk inside the circle. If it happens that
position at some time during the walk is adjacent to t
original seed, then the motion stops and the particle g
attached to the seed, so that a cluster of two particles is
formed. If it happens that the particle moves outside
circle, i.e., away from the seed, then this particular particle
ignored, and we go on to the next particle. The process c
tinues with a numberN of particles being attached to th
cluster. The numberN depends on the desired size. A com
plete DLA structure is shown in Fig. 1~a!. The interesting
and curious observation in DLA is the peculiarity of th
structure formed, which is far from compact. The charact
istic property that prevails is that after the initial formation
the cluster by the first few particles, subsequent partic
have a very low probability of reaching and attaching to t
original seed, or to a site close to it, but a high probability
attaching along the dendrites, further increasing the dend
character of the overall shape. An added advantage of
DLA model is that it is a regular fractal structure, i.e., it
self-similar under magnifications or reductions. It has a fr
tal dimensiondf51.60. While a DLA is a highly random
structure, and statistical in nature, this characteristicdf pro-
vides a useful quantitative measure to the entire system.

A number of neurons of sizeN is first formed indepen-
dently and then placed together on a two-dimensional squ
lattice, in random positions. Thus the sytem has a densitr,
which is given by the ~total number of neuron
sites!/~number of system lattice sites!. The placing is done by
randomly choosing the positions of the seed of each neu
It is not allowed for two seeds to be closer than a minimu
distancer 0. This is done so that the overlap is mainly on t
dendrites and not on the neuron soma or axon. The ove
sites are first identified as the sites occupied by dendr
belonging to different neurons. These sites are labeled as
system synapses.

At the ends of the lattices cyclic boundary conditions a
employed, so that one unit touching the lattice boundary m
be allowed to continue on the other side.

III. NEURON DYNAMICS

The signal is initiated in a neuron site. Both the site a
the neuron are randomly chosen. This initial site is char
terized as active. One time unit is the time it takes for t
signal to be transmitted to its neighbor site, which is in t
same neuron. This is the smallest time increment in
model. There are available up to three neighbor points. T
is because the signal at each instance preferentially does
return to the site where it originated, but is spread forwa
throughout the network. This is done by characterizing
original point as passive for the subsequent two time units
that no signal can propagate through it for two momen
This restriction is removed after two time units. The new
visited points are also characterized as active. This proce
is repeated for a large number of time units. This mode
transfer resembles a spreading wave.

When the signal reaches a synapse site, it may be ca
over to the adjacent neuron that it is in contact with. In ord
for this to happen the value of the signal must be greater t
the neuron thresholdu. Hereu is given as a parameter. If th
signal is smaller thanu then it is not lost but accumulated a

c-
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the synapse together with other arriving signals. At this po
there is an option for adjusting the length of time over wh
accumulation takes place so that this time is used as a
rameter. When the signal is greater than the thresholdu, then
it can be carried over to the adjacent neuron. This proced
is not instantaneous, but the transmission is delayed fo
certain time, called the synaptic delay~SD!. The reason for
this is because it is known that the signal transfer in
synapse is of the order of 1000 times slower than the tran
inside a neuron. If during the synaptic delay a new sig
reaches the synapse it is ignored. After firing, the syna
goes into a refractory period~RP!. We define the refractory
period as the time period that follows the activity of a sy
apse, during which period this synapse cannot be active
more but must necessarily remain passive.

All synapses operate only one way, the direction be
chosen at random, but staying the same for the entire d
tion of the calculation. When a traveling signal first reache
synapse, it checks to find out the directionality of that sy
apse. If the direction of propagation is the same as the di
tionality of the synapse then the process proceeds as
scribed. If, on the other hand, the synapse directionality
opposite, then the signal cannot be transmitted. In this c
the synapse is placed in a refractory period. All signals p
sibly present in that synapse are annihilated.

All synapses are characterized as either excitatory or
hibitory. The fraction of each~out of the total number of
synapses! is f e and f i , respectively. Thus,f e1 f i51.0. The
identity of each synapse is determined at random wit
probability according to that fraction. Generally, the exci
tory ~inhibitory! characterization describes the property th
brings closer~further away! the synapse signal value to th
synapse threshold. In particular, this is implemented h
using the following way: For an excitatory synapse the sig
is transmitted in its full value, as previously described. F
an inhibitory synapse the signal becomes negative, and s
larly it gets transmitted through the synapse to the next n
ron, but its value is decreasing with time. The rate of d
crease is constant, following a simple first-order rate la
The constantk is also given as a parameter. The same c
stant is used throughout this paper; it is such that it decre
the signal by1

20 of its previous value. When a negative sign
reaches a synapse it causes the synapse threshold to inc
by an amount equal to the signal value. This lasts for a c
tain amount of time and then the threshold returns to
normal value. Here we usedt550 time steps for all calcula
tions. Negative signals traveling inside a neuron cannot
transmitted to other neurons.

In the present model the number of existing synapses
pends on the density of the DLA structures. Thus, we int
duce the parameterf s, which represents the fraction of th
synapses that can be used to transfer the signal. The re
the synapses are present but the signal cannot be propa
through them. This is a way to increase or decrease the o
all signal transmission. Individual synapses are chosen
domly, according to probabilityf s , regarding their activity.

IV. SIGNAL ANALYSIS

The behavior of a neural network such as the one
scribed here is monitored via the network activity that
t
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exhibits, as a function of time. The activitya is defined as
the fraction~out of the total! of the active units at a given
time. In most cases we consider as a unit the entire neu
even though~see later! we also examine the case of the sy
apse constituting a unit. Thusa5~neurons that are
active!/~total number of neurons in the system!. Thus, it is
always 0,a,1. In Figs. 3–8 we show the response of t
neural network to a change in the values of the parame
discussed. In Fig. 3 we have a neural network with a refr
tory period RP5300, a synaptic delay SD5800, and a frac-
tion f e50.8 of excitatory synapses. We vary heref s , the
fraction of synapses used, fromf s50.2 to f s51.0. We im-
mediately observe that the activity exhibits an oscillato
behavior. It starts from a zero value, increases during the
10 000 steps, and then reaches a constant, ‘‘equilibriu
value. This constant value is higher for the larger fraction
active synapses, as expected, since there are more path
by which the signal can spread throughout the entire n
work. Thus, it ranges from abouta50.2 ~for f s50.2) to
a50.4 ~for f s51.0). We notice that the relation is far from
linear, but actually sublinear, implying that in a system su
as the present one, due to the large number of units
interconnections, one needs only a small fraction of act
synapses for the signal propagation. Conversely, if a la
number of synapses is destroyed over time, this does not
to catastrophic consequences for the operation of the ne
net.

The oscillatory behavior is encountered~and also in the
subsequent figures! because of the constraint of the refra
tory period imposed on the neural activity, which decrea

FIG. 3. Normalized~neuron! activity vs time @in Monte Carlo
steps~MCS!# RP5300, SD5800, f e50.80. The four diagrams de
pict the percentage of the synapses that is used,f s , which is ~bot-
tom to top!: f s51.0, 0.75, 0.50, 0.20.
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56 4493MODEL FOR A NEURAL NETWORK STRUCTURE AND . . .
the activity to zero after firing. This is a very realistic feature
First, it shows that the activity time series is not fully peri
odic. However, there is obviously some ‘‘approximate’’ pe
riodicity as the distance between the peaks is almost co
stant. This means that some new information may b
revealed in it, and this is presented after the discussion of
figures with the variation of the system parameters.

Figure 4 shows the same data as in Fig. 3, but now w
plot the activitya of the synapses, i.e., only for this figure
for comparison purposes,a is the fractiona5~synapses that
are active!/~the total number of synapses!. We observe simi-
lar behavior as in the activity of neurons of the previou
figure.

Figure 5 shows the variation of the length of the SD. He
SD goes from 200 to 1500, and we notice that the activity
neuronsa goes froma50.10 to a50.45. This increase is
also expected, because the short SD allows for faster sig
transmission and propagation.

Figure 6 shows the variation off e , the fraction of exci-
tatory synapses. A small fraction leads to an almost ze
activity, and vice versa. Of course, this is due to the fact th
a small fraction of excitatory synapses means that typica
these synapses are well below the threshold value.

In these calculations the general question arises as to w
effect randomness has in the observed behavior, and also
the relation of randomness to the choice of the specific v
ues of the parameters used. For this reason we perform
calculations for the parameter values of Fig. 6 under seve
different variations of randomness. Thus, we used differe

FIG. 4. Normalized ~synapse! activity vs time ~in MCS!.
RP5300, SD5800, f e50.8. The four diagrams depict the percent
age of the synapses that is used,f s , which is ~bottom to top!:
f s51.0, 0.75, 0.50, 0.20.
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starting points of the signal. This implies that all signals
would follow totally different paths. We also used totally
different DLA clusters with the same stipulations as before
The results are shown in Figs. 7 and 8. In these figures w
use the same parameter values as in Fig. 6. In Fig. 7 we ha
the case of a small fraction of excitatory synapses,f e50.3.
We notice that we get a large variety of signals, ranging from
zero to periodic signals, but all have the characteristic th
they are small, and consistent with the small values of Fig.
In Fig. 8 we performed the same calculations, but for a larg
fraction of excitatory synapses,f e50.8. Here we see that the
variation of the signal is minimal, implying that for large
parameter values the system behavior is always the sam
We conclude that randomness in these systems does
drastically affect their behavior, but simply shows the statis
tical character of the process.

A first impression about the nature of these signals can b
obtained by taking the power spectrum of these, at least
exclude the possibility that there is only white noise presen
Thus, in Fig. 9 we take the power spectrum of the curve o
Fig. 3~a!, and plot it in log-log form. We see a straight line
with the slope of21.81. Different statistical realizations of
this curve produced a slope of21.83 ~average of 10 differ-
ent realizations!. This implies af 22 law, and some underly-
ing structure in the signal.

In order to quantitatively interpret the periodicity of the
activity signals presented above, we performed an analysis
several of these signals, according to the method of Gras
berger and Procaccia@6#. In this method the signal is treated

FIG. 5. Normalized ~neuron! activity vs time ~in MCS!.
RP5300, f e50.8, while the fraction of the synapses that are used
f s50.50. The four diagrams depict the SD, which is~bottom to
top!: 200, 600, 1000, 1500.
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as a time series for which a possible characteristic frac
dimension can be derived. This is done in the followin
method. We consider a time series to be made of the sig
of any of these in Figs. 3–8. We must ignore the section
the series which gives an initial rise, and keep only the se
tion for which the signal varies around a mean value,
which point it is a steady-state signal. For example, for th
signal of Fig. 5~c! we consider the time domain
10 000,t,50 000. Let us call this signalx0(t). We would
like to reconstruct the dynamics of the system solely on o
knowledge ofx0(t). We consider the phase space spann
by the variablesk50,1,2,. . . ,n21, wherek are several
variables that take part in the dynamics of the system. F
our problem these are the parameters of refractory perio
synaptic delay, etc. At a given time a state of the system is
point in phase space, while a sequence of states in time gi
a trajectory. If the dynamics of the system obey some dis
pative deterministic laws, then the trajectories converge to
attractor. We thus form this attractor from thex0(t) series,
by successively shifting the original time series by the sam
amount in timeDt, and formingn such series as

x0 :x0~ t1!,x0~ t2!,x0~ tN!,

x1 :x0~ t11Dt !,x0~ t21Dt !, . . . ,x0~ tN1Dt !,

x2 :x0~ t112Dt !,x0~ t212Dt !, . . . ,x0~ tN12Dt !, ~1!

A

FIG. 6. Normalized ~neuron! activity vs time ~in MCS!.
RP5300, SD5800, f s50.5. The four diagrams depict the chang
in the fraction of the excitatory synapses, which is~bottom to top!:
f e50.80, 0.60, 0.50, 0.30.
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xn21 :x0„t11~n21!Dt…,x0„t21~n21!Dt…, . . . ,

x0„tN1~n21!Dt….

These variables are expected to be linearly independent if th
Dt shift is properly chosen. We chose several differentDt
values, but in the subsequent calculations we useDt51000
time units. Notice thatx0(t) is a vector made of the set of
points, as given in Eq.~1!. A general notation for it isxi . We
now choose a reference point inxi and compute all the dis-
tancesuxi2xj u from the (N21) remaining points. This way
we get the total of all pointsxi in phase space. Doing this for
all i we get

C~ l !5
1

N( F 1

N( Q~ l 2uxi2x0u!G , ~2!

whereQ is the Heavyside step function,Q(x)50, if x,0
andQ(x)51 if x.0. C( l ) is the correlation function of the
attractor, since it shows how a point in the vectorxi affects
the positions of other points. Thus if the attractor is a
d-dimensional manifold, then we expect

C~ l !; l d, ~3!

with its dimensionality given by the exponentd. In Fig. 10
we plot in log-log formC( l ) vs l for several differentm
values. We see that for smallm the slopes of the ensuing
curves increase, but afterm55 ~approximately! the slopes

FIG. 7. Normalized ~neuron! activity vs time ~in MCS!.
RP5300, SD5800, the fraction of the synapses that is used is
f s50.5, while the fraction of the excitatory synapses isf e50.30.
Each plot is produced for a different signal starting point~different
random number generator seed!.
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become constant. In Fig. 11 we plot the slope vsm, produc-
ing the fractal dimension of the system. We do this for th
four signals of Fig. 5, which are very different in their com
plexity. The eventual limiting slope is in the range of 4.0–
5.0, while we observe that the higher-frequency signal giv
the highest slope and as the frequency signal decreases,
fractal dimension also decreases monotonically. Thus, th
method supplies a good quantitative criterion, that connec

FIG. 8. Normalized ~neuron! activity vs time ~in MCS!.
RP5300, SD5800, the fraction of the synapses that is used
f s50.5, while the fraction of the excitatory synapses isf e50.80.
Each plot is produced for a different signal starting point~different
random number generator seed!.

FIG. 9. Power spectrum of the signal of plot of Fig. 3~a!, plotted
in logarithmic scale. The frequency is in inverse MCS.
e

s
the
is
ts

the neural net activity to the fractal dimension picture. O
course, if the signal contained only white noise, then w
would not observe the saturation to a finite slope, as in Fi
11, but the slope would increase linearly withm in the entire
domain. We note here, however, that the estimation of th
slopes in the curves of Fig. 10~that are used to produce Fig.
11! is very precarious, because our data do not have lo
straight line sections, as one would, in principle, expect the
retically. Since this is common with experimental signals, w
used only the straight sections of these curves, but in a co
sistent manner.

In Fig. 12 we plot the Kolmogorov entropyK vs m for the
value of l50.004.K is defined as

K5
lnCm

lnCm21
~4!

and we observe that in the same rangeK is also reaching a
constant value, as expected, from the fractal dimension p
ture.

s

FIG. 10. The correlation coefficientsC2( l ) vs l for the signal of
Fig. 5~b!.

FIG. 11. Slopes of the curves of Fig. 10 vsm.
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We performed the same analysis for some more such
nals, resulting is similar curves, and similar fractal dime
sions. The implication of this analysis is that for our syste
the minimum embedding dimension is approximately in
range ofm55 –6, signifying that this is the number of pa
rameters that is necessary to describe the system. This n
ber most probably maps the total number of parameters u
in the simulation, and thus it includes the refractory peri
the synaptic delay, the percentage of synapses used, an
percentage of excitatory synapses~total of four parameters!.

V. SUMMARY AND CONCLUSIONS

In the present work, we have attempted to build a prim
tive model for the activity of neural networks that incorp
rates the characteristics of the neural activity of the CN
with several conceptual parameters, for which it is kno
from physiology that they are very basic in the dynamics
neural networks in living organisms. The prime difference
our model is that it does not treat the neuron as the sma
unit of the neural network, but each neuron is made of th
sands of building blocks, with a ramified dendritic structu
which plays an important role in the signal transfer.

We have shown that the activity of a net made of DL
structures produces a very complex, ‘‘chaotic’’ looking si
nal, which, upon elaborate analysis, is found to contain
formation about the magnitude of the system paramet
This signal is the response of the system to the random
pulse presented. A detailed approach shows that it is far f
random or white noise, but it quantitatively gives a meas
of the ability of the neural net to sustain its activity. Eve

FIG. 12. Kolmogorov entropyK vs m for the data of Fig. 10.
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set of initial conditions that is used leads to a characteri
fractal dimension, which is always monotonic and within
given range. The numerical value of the fractal dimens
gives information about the signal magnitude and other ch
acteristics, making it a useful quantity to monitor.

An important point is that the brain is a very comple
feedback system. The biological systems in nature consis
millions of elementary feedback subsystems, which con
each other in a very precise hierarchical structure. In
present simulation feedback subsystems exist created in
dom order. In these subsystems both inhibitory and exc
tory synapses exist. We have included a parameter that
fines the ratio between the excitatory and inhibito
synapses. We observed that a major number of inhibit
synapses corresponds to a lower activity of the system
pressed in the number of active units at the given time. T
situation is observed in biological systems as well, especi
when we supply the organism with substances that enha
the inhibitory synapses.

Also of importance is the ‘‘spatial’’ aspect of the sign
transmission. In the brain the signals are transported
bundles of fibers, a structure that does not exist in our mo
because of the small number of neurons used. We will d
with this in the future.

The brain, as an autonomous system, operates under
ous internal or external conditions. If it loses a small numb
of neurons and/or synapses, it can achieve its target with
a serious problem. In various diseases, such as in Parkins
disease, it is well known that before the first symptom a
pears, a specific region of the brain~substantia nigra! loses
more than 60–70 % of its neurons, and consequently
relevant synapses. Similar observations pertain in all deg
erative diseases. This condition is treated in the pres
study, as the parameter in the system given by the ratio
active synapses. We saw that the system activity is decre
as the number of active synapses is decreased. A de
quantity would be the exact point that this degeneration fi
appears. However, we have not dealt in detail with this qu
tity in the present study.

In conclusion, we see that incorporating many comp
features in neural networks based on information from n
roscience leads to interesting conclusions, some expec
while others give, at least qualitatively, the trends of wh
happens when the number of synapses and the excitato
inhibitory ratio are decreased.
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